
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Software
Engineering and Compiler
Construction

From XML Schema to JSON Schema -
Comparison and Translation
with Constraint Handling Rules
Bachelor Thesis at the University of Ulm

Submitted by:
Falco Nogatz
falco.nogatz@uni-ulm.de

Reviewer:
Prof. Dr. Thom Frühwirth

2013

Version December 10, 2013

c© 2013 Falco Nogatz

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

This thesis identifies similar semantics in the two schema definition languages XML

Schema and JSON Schema to build a dictionary which covers typical use cases to

automatically transform first to the latter. As the range of functions of both XML Schema

and JSON Schema are not identical, concrete transformation rules to reproduce similar

behavior of data constraints are discussed and implemented by use of the logic program-

ming language Constraint Handling Rules. As a result, a Prolog library xsd2json is

created which provides tools to translate complex XML Schema documents into their

equivalent JSON Schema documents.

iii

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Scope of this Thesis . 3

1.3. Methodology . 3

1.4. Road Map . 3

2. Technologies 5

2.1. XML . 5

2.2. XML Schema . 8

2.3. JSON . 10

2.4. JSON Schema . 12

2.5. Prolog . 13

2.6. Constraint Handling Rules . 14

3. General Translation Process 17

3.1. Read in XML Schema into Prolog . 19

3.2. XML Flattening . 23

3.3. Setting Defaults . 25

3.4. Fragment Translation . 26

3.5. Wrap JSON Schema . 31

3.6. Clean up and JSON Output . 32

4. Translation Rules 35

4.1. XSD Primitive Types . 36

v

Contents

4.2. Constraining Facets . 38

4.3. Translation of nested XSD Elements . 42

5. Evaluation 53

5.1. Test Framework . 53

5.2. Current Limitations . 54

6. Conclusion 55

6.1. Summary . 55

6.2. Outlook . 56

A. User Manuals 59

A.1. xsd2json . 59

A.1.1. Installation . 59

A.1.2. Usage . 60

A.2. Test Framework . 60

A.2.1. Installation . 61

A.2.2. Provided Tests . 61

A.2.3. Pretty TAP output . 62

A.2.4. Transform a single XSD File . 62

B. Source Codes of Prolog Predicates 63

B.1. xsd_flatten_attributes/2 . 63

B.2. xsd_flatten_nodes/4 . 64

B.3. xsd_namespace/1 . 65

B.4. xsd_namespaces/1 . 65

B.5. lookup/4 . 66

B.6. merge_json/4 . 66

B.7. merge_json/3 . 69

B.8. remove_at_from_property_names/2 69

B.9. is_required_property/2 . 75

vi

Contents

C. Source Codes of CHR Rules 77

C.1. Translation of xs:attribute . 77

List of Tables 85

Bibliography 87

vii

1
Introduction

1.1. Motivation

XML, the Extensible Markup Language, is one of the most used format to save and

exchange structured data, especially in web services. There exist applications for nearly

every use case scenario [Cov05], covering the data formats to exchange calendar

information as well as mathematical expressions. Because of its wide distribution, a

very large ecosystem has been evolved: Beside a big number of tools to display and

manipulate XML files, access partial data via query languages like XPath, data formats

to specify the schema of XML documents has been established. One of them is the XML

Schema Definition (XSD), which is more expressive than the traditional Document Type

Definition (DTD). XML Schema allows to define the general format of an XML document,

that means which elements are allowed, the number and order of their occurrences, of

which data type they should be, etc.

1

1. Introduction

But since its proposal in 2006 there is a new player on the field of data formats: Data

serialized in the JavaScript Object Notation (JSON) is far smaller than its XML coun-

terpart and its instances are valid JavaScript objects, which made this interchange

format especially interesting for web developers as they no longer need a separate

conversion step when loading information in asynchronous web applications via AJAX

(Asynchronous JavaScript and XML). By now most popular web services use JSON for

their application programming interfaces instead of XML. While the pure JSON format

has been established quite fast, the ecosystem is not yet comparable to XML: The first

draft for a schema language to “define validation, documentation, hyperlink navigation,

and interaction control of JSON data” [KZ09] is from 2009 and in 2013 still a draft [KZ13],

even though its author Kris Zyp mentioned that the current version is ready to use and a

potential fifth draft would be only a clean up.

Besides its draft status one of the reasons that JSON Schema is not established like

XSD is that there is currently no easy way to transform already defined XML Schemas

into equivalent JSON Schemas. There already exist some XML to JSON converter, that

are able to translate an XML document into its JSON counterpart. By using such like

XML to JSON converter it might be possible to translate a single XML document into

its JSON equivalent, but this will not be an option for the Schema instances: One can

not simply convert a given XML Schema document with the hope, that the resulting

JSON document will be a valid JSON Schema document as well, because the semantics

of both metalanguages are different. This is why there is a need for a dedicated XML

Schema to JSON Schema converter.

By the use of Prolog and Constraint Handling Rules as its primary programming language,

it is natural to solve this problem in a declarative manner: We want to describe several

use cases like “every xs:element within a xs:sequence node should be translated by

this JSON Schema fragment” by simply referencing the addressed XML Schema nodes

without having to worry about the actual tree traversal process. Using the rule-based

approach we can establish concrete translations of common structures within an XML

Schema document.

2

1.2. Scope of this Thesis

1.2. Scope of this Thesis

Both description languages, XML Schema and JSON Schema, do not provide the same

range of functions to characterize the constraints of its instances. In XML documents,

information can be stored either as the text entity of an XML node or as one of its

attributes, while JSON objects are simply key-value pairs. Therefore it is easier to find a

JSON Schema equivalent to an XML Schema than vice versa.

We will investigate common XML Schema use cases and provide equivalent JSON

Schema instances. Beginning with simple data types and their restrictions we provide

translation rules for complex XML types with respect to their contexts. We will use the

logic programming languages Prolog and Constraint Handling Rules (CHR) to directly

implement the deduced translation rules. With the use of declarative programming

languages we can concentrate on the translation process instead of the implementation

of the tree traversal.

1.3. Methodology

This thesis provides a broad set of translation rules for common XML Schema snippets

to their equivalent JSON Schema instances. While discussing them by a theoretical point

of view, a prototype for a converter of XSD instances into valid JSON Schema instances

is one of its main results. At the end, we will evaluate the elaborated translation rules and

the prototype and discuss what further technologies would help to establish a complete

translation.

1.4. Road Map

As both examined description languages, XML Schema and JSON Schema, are for

them self valid XML respectively JSON instances, we start with a brief introduction into

those data formats followed by their Schema definition languages. At the end of chapter

3

1. Introduction

2 we introduce the used declarative programming language CHR and its host language

Prolog.

Next in chapter 3, we elaborate the general transformation process by dividing it into

several steps: Beginning with the read in of an XML document into Prolog, we create

CHR constraints for each XML Schema node and attribute. Those are used to translate

XML Schema fragments into their equivalent JSON Schema. The whole process ends

ups with the collection of all JSON Schema fragments and building of a single JSON

Schema document.

The concrete translation rules of the so called XML Schema fragments are introduced

in chapter 4. Beginning with XML Schema’s primitive data types, followed by derived

types, up to combined elements we elaborate JSON Schema equivalents for typical XML

Schema use cases.

At the end the test framework is presented which is an important part of the test-

driven development approach of xsd2json. We discuss current limitations of the

implementation and give an outlook on future improvements.

4

2
Technologies

This chapter introduces the examined description languages, the XML Schema Definition

language and its JSON counterpart JSON Schema. At the end we introduce Prolog and

Constraint Handling Rules which are used to describe the translation rules and for the

implementation of the converter prototype.

2.1. XML

The Extensible Markup Language, for short XML, is a markup language. It is both human-

readable and machine-readable and therefore used as a interoperable data format. It

is a subset of the Standard Generalized Markup Language (SGML) and standardized

by the World Wide Web Consortium (W3C). The latest version is the XML 1.1 (Second

Edition) Specification [bra06].

5

2. Technologies

Listing 2.1: Example XML document for a product catalog

1 <?xml version="1.0"?>

2 <catalog>

3 <item id="4711">

4 <name>Unit 1</name>

5 <price currency="Euro">19.99</price>

6 <price currency="Dollar">27</price>

7 </item>

8 <item id="4712">

9 <name>Unit 2</name>

10 <price currency="Euro">12.50</price>

11 </item>

12 </catalog>

An XML document consists of a number of elements and their attributes. A simple

example XML document is shown in Listing 2.1. To describe its components we use the

following terminology:

• Tag

A tag is a name bordered by a smaller-than and greater-than character, i.e. the tag

with the name price is written as <price>. We distinguish three types of tags:

– Opening tag, e.g. <price>

The opening tag marks the beginning of the content of an XML element.

– Closing tag, e.g. </price>

The closing tag marks the end of the content of an XML element.

– Empty tag, e.g. <price/>

The empty tag is the short variant for a starting tag followed immediately by

its closing tag, e.g. <price></price>. As its name implies, it neither has a

child element nor a textual content.

• Element

An element is either an empty tag or the combination of an opening tag and its

6

2.1. XML

closing tag. Its content is all between the opening and the closing tag and might

be again some XML elements or only text or a mix of both.

• Parent element, child element, siblings

We refer to the element in whose content another element appears with an opening

and/or closing tag, as its parent element. On the other hand the child elements of

an element are all elements whose opening and/or closing tag in the very first level

of the element’s content.

Siblings are all element with the same parent element.

• Attribute

Each element can have a number of attributes which can be specified in its

opening or empty tag as key-value pairs, e.g. <price currency="Euro" />.

The attribute’s value can be enclosed in either single or double quotes.

An XML document is well formed, if the following constraints are satisfied:

1. A single root element

Every XML document must have a single top-level element which is called the

root element. It contains all other elements or textual context or could be empty.

Because of the fact, that comments (<!-- ... -->) and preprocessing instruc-

tions (<? ... ?>) are in fact no XML elements, one could use them additionally

on the document’s top level. The root element has neither a parent element nor

siblings.

2. Closing tag for each opening tag

Because the so called Omittag feature of SGML is set to No in the XML declaration

[Cla97], neither opening tag nor closing tags can be optional, in other words for

each opening tag there must be a closing tag.

3. No overlapping elements

Every element must have a single parent element, in other words its opening and

closing tag must be in the content of the same element.

7

2. Technologies

4. No smaller-than character in texts

The smaller-than character < is reserved as the starting symbol of tags and must

therefore not occur in an element’s textual content.

In the following we will suppose to handle only well formed XML documents.

2.2. XML Schema

While the characteristic of being well formed only means that a given XML document is

syntactically correct, one often aims for an additional property: it should be also valid

against some specification and keep some conditions. This is where XML Schema

comes into play.

XML Schema (XSD for XML Schema Definition, or formerly WXS for W3C XML Schema)

provides a mechanism to describe the general structure of an XML instance, that

means the occurring elements, their attributes and how they can be nested. It is

standardized by the W3C, the latest version is the XML Schema 1.1 Specification

([GSMT+08] and [PGM+08]). Although the XSD 1.1 Specification is the official W3C

Recommendation since April 2012 [Arc12], this thesis uses the XML Schema 1.0 (Fifth

Edition) Specification [Bir04] as its basis for the translated XML Schema instances. The

newer specification introduces conditional types based on an XPath expression and the

new XSD elements <xs:assert> and <xs:assertion> which are used to specify

XPath constraints. As there is as of yet no standardized XPath equivalent for JSON

instances those constraints could not be translated by a converter into equivalent JSON

Schema.

In an XML Schema the general structure of an XML document is specified as well as

constraints for the contained entities. The following components of an XML document

are described [BFRW01] by the schema:

• Element

Every element used in the XML document is defined by an element declaration

which includes the element’s name, namespace and type. The element’s name-

8

2.2. XML Schema

space do not need to be specified explicitly but can be derived by its parent element.

The element is either of a simple or complex type.

• Attribute

Every attribute used within an XML element is defined by an attribute declaration.

The attribute has a (derived) target namespace and is always of a simple type.

Additionally the fixed or default value can be declared.

• Simple Type

There are two general types in XML Schema: simple and complex types. Simple

type (also called data types) instances are single values, i.e. in general strings

or numbers. With the use of restrictions it is possible to specify their format or

possible values.

• Complex Type

A complex type describes the content of an element, that means which child

elements are allowed, in which order and amount. It also specifies the element’s

attributes. Complex types can be restricted and extended.

By using the XML Schema metalanguage we can characterize these elements, attributes

and types of an XML document by an XSD document, which is an XML document for

itself. The concrete XML Schema syntax to specify the document’s structure and its type

are introduced in chapters 3 and 4, where an equivalent JSON Schema translation for

each is elaborated. Just to show the general layout of an XML Schema document we

present in Listing 2.2 a possible schema for the XML document mentioned above:

Listing 2.2: Example XML Schema for 2.1

1 <?xml version="1.0" ?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 <xs:element name="catalog">

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name="item" type="item"

7 maxOccurs="unbounded" />

8 </xs:sequence>

9

2. Technologies

9 </xs:complexType>

10 </xs:element>

11

12 <xs:complexType name="item">

13 <xs:sequence>

14 <xs:element name="name" type="xs:string" />

15 <xs:element name="price" type="price"

16 maxOccurs="unbounded" />

17 </xs:sequence>

18

19 <xs:attribute name="id" type="xs:nonNegativeInteger" />

20 </xs:complexType>

21

22 <xs:simpleType name="price">

23 <xs:restriction base="xs:decimal">

24 <xs:minInclusive value="0" />

25 </xs:restriction>

26 </xs:simpleType>

27 </xs:schema>

2.3. JSON

JSON is a data format designed to exchange human- and machine-readable information

in a key-value format. It is formal specified in RFC 4627 [Cro06] and was introduced by

Douglas Crockford in 2006. Since then it became popular especially in web services

and is going to take over from XML as the first choice to communicate with application

programmable interfaces [Duv11]. Being directly supported in JavaScript, it is per-

fectly suited for web-based architectures. Compared to XML, parsing JSON in modern

browsers is faster and the network transmission time is lower [NPRI09].

10

2.3. JSON

Listing 2.3: Example JSON document for a product catalog

1 {

2 "items": {

3 "4711": {

4 "name": "Unit 1",

5 "prices": {

6 "Euro": 19.99,

7 "Dollar": 27

8 }

9 },

10 "4712": {

11 "name": "Unit 2",

12 "prices": {

13 "Euro": 12.50

14 }

15 }

16 }

17 }

A JSON document consists of a number of key-value pairs (also called attribute-value

pair), ordered lists and and simple values of a basis type [JSO13a]. An example JSON

document is shown in Listing 2.3. We use the following terminology to describe its

components:

• Value

A value is either an array, an object, a string encapsulated in double quotes, for

example "foo", or any number or one of true, false, null.

• Array

An array is an ordered collection of values, encapsulated in the brackets [and].

The values are separated by commas and do not need to be of the same type.

11

2. Technologies

• Object

An unordered collection of name-value pairs is called object and must be encapsu-

lated in curly braces { and }. The key is a string encapsulated in double quotes

and must be followed by a colon : and its value. The keys must be unique for each

object.

While the JavaScript syntax (specified as ECMAScript in [ECM99]) defines more basis

data types than boolean, null, string and number, the additional formats like Date,

Function and Regular Expression are not part of the JSON specification and must

therefore modelled as strings or numbers. We will see in the next section 2.4 that there

are formats defined for common properties like dates, phone numbers etc.

2.4. JSON Schema

While the pure JSON format has been established over the recent years, the ecosystem

is not similar to XML: The first draft for a schema language to “define validation, docu-

mentation, hyperlink navigation, and interaction control of JSON data” was created in

2009 [KZ09] and is in 2013 still a draft [KZ13], even though its author Kris Zyp mentioned

that the current version is ready to use and a potential fifth draft would only be a clean

up [JSO11]. The latest version of the specification, Draft 04, is supported by a number

of validators in multiple programming languages. A list of current implementations can

be found in [JSO13c].

A JSON Schema is defined in a JSON document for itself. A possible schema for the

JSON product catalog mentioned in Listing 2.3 is shown in Listing 2.4. The semantic of

the JSON Schema elements is specified in [Gal13].

Listing 2.4: Example JSON Schema for 2.3

1 {

2 "type": "object",

3 "properties": {

4 "items": {

12

2.5. Prolog

5 "type": "object",

6 "additionalProperties": {

7 "type": "object",

8 "properties": {

9 "name": {

10 "type": "string"

11 },

12 "prices": {

13 "type": "object",

14 "additionalProperties": {

15 "type": "number",

16 "minimum": 0

17 }

18 }

19 }

20 }

21 }

22 }

23 }

2.5. Prolog

To specify the concrete translation rules of XML Schema snippets into an equivalent

JSON Schema we use a combination of the logic programming languages Prolog and

CHR (see 2.6). By using a declarative programming approach, we can concentrate on

the translation rules itself instead of implementation details of the tree traversal.

Prolog was one of the first logic programming languages. There exist multiple implemen-

tations, the most popular are SICStus Prolog and SWI-Prolog. Following a declarative

approach, a Prolog program consists of facts and rules. A rule consists of a head and

body as shown in Listing 2.5.

13

2. Technologies

Listing 2.5: Structure of a Prolog rule

1 Head :- Body.

The rule’s head must be a single predicate whereas the body can be an conjunction

(separated by a comma) or disjunction (separated by a semicolon) of any number of

predicates. The predicates in the rule’s body are called goals. The semantic of a rule

with the structure mentioned in Listing 2.5 is “head is true if body is true” and is therefore

a horn clause. If the body of a rule is empty or true like in Listing 2.6, we call it fact.

Listing 2.6: Example of a Prolog fact

1 foo(bar).

2 foo(bar2) :- true.

Once the user posts a goal (or it is called for example in the guard of a CHR rule), the

Prolog engine tries to find a binding for the given free (also called unbounded) variables

that satisfies the predicate with respect to the defined facts and rules. If all variables

are bound, the Prolog engine searches for a satisfiable resolution. The given facts

and rules are examined in their order in the source code. If the application of multiple

rules is possible, backtracking is used to prove the given goal. [CM84] provides further

information about the semantics of Prolog.

2.6. Constraint Handling Rules

Constraint Handling Rules (CHR) is a declarative programming language following the

constraint-based programming paradigm. It was invented in 1991 by Thom Frühwirth

and is usually used as an extension for a host language. Today there are multiple

implementations, also in non-declarative programming languages like Java. The most

popular host language is currently Prolog, therefore the CHR library is included in many

Prolog implementations like SWI-Prolog and SICStus. The implemented prototype of an

XSD to JSON Schema converter is tested with the CHR library for SWI-Prolog.

14

2.6. Constraint Handling Rules

CHR adds a new term besides the known predicates of Prolog: constraints. While

every goal in Prolog has to be proven immediately by the use of variable binding,

unification and backtracking, we can add constraints to a constraint store. By defining

CHR rules it is possible to manipulate the entries of this constraint store, that means

depending on its currently saved constraints it is possible to remove some of them or

add new ones.

Effectively the CHR extension adds three types of rules to our logic programming syntax

to manipulate the contents of the constraint store. These rules of a CHR program are well-

known from the mathematical logic for computer programming: Besides the simplification

and propagation rules there is a mixed type called simpagation. Simplification rules

replace constraints with usually simpler ones while propagation rules add new constraints

depending on the known. Simpagation rules can be used to replace constraints based

on known information which is for example useful for removing redundant data. Listing

2.7 shows the concrete syntax of the three rule types.

Listing 2.7: Syntax of CHR rules

1 -- Propagation

2 Head ==> Guard | Body.

3

4 -- Simplification

5 Head <=> Guard | Body.

6

7 -- Simpagation

8 Head1 \ Head2 <=> Guard | Body.

Unlike Prolog the head of a CHR rule can consist of more than one constraint. The

semantic of a propagation rule is “if all constraints mentioned in the rule’s head and the

guard can be satisfied, add the constraints of the rule’s body to the constraint store”.

The same applies for a simplification rule with the difference, that all constraints of the

head are removed from the constraint store. The simpagation rule is a combination

of both: The constraints specified in Head1 are kept, whereas constraints of Head2

are removed from the constraint store. The guard is optional for all rules and may only

15

2. Technologies

contain built-in predicates, that means only (possibly user-defined) Prolog predicates

and no CHR constraints.

If a constraint is added to the constraint store, for each defined CHR rule is checked

whether the expected constraints are now all available in the constraint store and the

guard can be satisfied. If that is the case the rule gets applied with the semantic

introduced before. [Frü95] offers further information about the concrete mechanisms

how CHR programs are executed.

In the following we generally refer to constraints as “CHR constraints” to prevent con-

fusions with the definition of the XML Schema. We will call some of its restriction

“constraints” too, especially the constraining facets introduced in section 4.2.

16

3
General Translation Process

The technologies introduced before are the basis for the prototype implementation of

a converter that translates XML Schema documents into equivalent JSON Schema

documents. The aim was to create a Prolog/CHR module that offers a predicate

xsd2json(XSD,JSON) which holds the translated JSON Schema JSON for the given

XML Schema XSD. With this module a simple command line tool that directly translates

XSD files has been created.

In this chapter we present the general translation process, beginning with the loading

of an XML Schema instance into Prolog right up to the creation of the related JSON

Schema. The overall translation process is splitted into six steps as shown in Figure 3.1:

1. Read in XML Schema into Prolog

2. XML Flattening

17

3. General Translation Process

3. Setting Defaults

4. Fragment Translation

5. Wrap JSON Schema

6. Clean up and JSON Output

The different steps are distinguished by their function and used programming language:

The read in XML Schema is represented as a nested term in Prolog and gets flattened

into multiple CHR constraints which are the basis for the actual translation. The translated

fragments are first modelled as CHR constraints and again subsequently wrapped into a

nested Prolog term which represents the resulting JSON Schema. In the last step, now

by the use of Prolog, unnecessary information gets removed.

Clean up and JSON Output

XML Flattening

Prolog

Fragment TranslationSetting Defaults

Wrap JSON Schema

Read in XML

CHR

Figure 3.1.: Steps of the overall translation process

The translation steps are also directly mapped to the implementation of the xsd2json/2

Prolog predicate which generates the translated JSON Schema as seen in Listing 3.1.

Listing 3.1: Definition of the xsd2json/2 Prolog predicate

1 xsd2json(Input,Result) :-

2 % Read in XML

3 % and generate an ID for its root element

4 load_xsd(Input,XSD),

5 root_id(Root_ID),

18

3.1. Read in XML Schema into Prolog

6

7 % XML Flattening

8 % that also triggers the Setting of the Defaults

9 xsd_flatten_nodes(Root_ID,0,XSD,Children_IDs),

10

11 % Trigger the Translation of single Fragments

12 transform,

13

14 % Trigger the Wrap-up of the JSON Schema and get

15 % the resulting object from the CHR constraint store

16 Children_IDs = [First_Element|_],

17 build_schema,

18 get_json(First_Element,JSON),

19

20 % Clean up the JSON Schema

21 remove_at_from_property_names(JSON,Result).

In the following, we discuss in detail the steps as well as the predicates and CHR

constraints used in the definition of xsd2json/2. The actual translation rules of concrete

XML Schema fragmets, which are triggered when the transform/0 CHR constraint is

added in the third step, have its own chapter in 4. There the translation of XML’s basis

types are introduced as well as the definition of elements, attributes and complex types.

3.1. Read in XML Schema into Prolog

SWI-Prolog already provides a wide support for the work with XML documents in general

and XML Schemas in particular. By the use of its SGML/XML parser [Wie05], XML docu-

ments (and so XML Schemas as they are XML documents for themselves) can be read in

as a nested term. The library can be loaded via :- use_module(library(sgml)).

but will be autoloaded in SWI-Prolog in most cases.

19

3. General Translation Process

The SGML/XML parser provides a Prolog predicate load_structure(+Source,

-ListOfContent, +Options) [Wie13a] which parses a given XML Source to a

ListOfContent. There is a wide range of Options to control for example the hand-

ling of namespaces and whitespaces. As we want to parse XML documents, we call

load_structure/3 in the definition of load_xsd/2 with the Options specified in

Listing 3.2:

• space(remove)

Whitespace-only nodes are removed, that means line-breaks and spaces which

are added in the XML just for layout purposes are ignored.

• dialect(xmlns)

SWI-Prolog’s SGML/XML parser has different parsing modes. The given dialect

supports the namespaces of the XML elements.

• xml_no_ns(quiet)

Normally, if an XML element has a namespace (like xs in xs:complexType)

which has not been specified via an xmlns:xs="..." attribute, the parser will

throw an error message. By use of the quiet handling, these error messages are

suppressed.

• call(xmlns,register_namespace)

If an XML element has a namespace specified, we will call the user-defined

predicate register_namespace/3.

Listing 3.2: Used options for the load_structure/3 predicate

1 load_xsd(Input,XSD) :-

2 Options = [

3 space(remove),

4 dialect(xmlns),

5 xml_no_ns(quiet),

6 call(xmlns, register_namespace)

7],

8 load_structure(Input,XSD,Parse_Options).

20

3.1. Read in XML Schema into Prolog

The xml_no_ns/1 and call(xmlns,register_namespace) directives are used to

implement a special behaviour once the XML parser comes across an XML namespace:

By the use of the dynamic Prolog predicate register_namespace/3 the found XML

namespaces are saved into new namespace_uri(Namespace,URI) facts as shown

in Listing 3.3. If an XML element has a namespace which has not been declared

before (for example <xs:complexType> without a xmlns:xs="..." attribute for it

or its parent element), the first Prolog rule is used and it will assumed to be the XML

Schema namespace http://www.w3.org/2001/XMLSchema. By this assumption it

is possible to run partial test cases without having to define the used namespace.

Listing 3.3: Creation of new namespace_uri/2 Prolog facts

1 register_namespace(Namespace,Namespace,_Parser) :-

2 asserta(

3 namespace_uri(Namespace,’http://www.w3.org/2001/XMLSchema’)

4).

5

6 % Namespace and URL given

7 register_namespace(Namespace,URL,_Parser) :-

8 Namespace \== URL,

9 asserta(

10 namespace_uri(Namespace,URL)

11).

The generated, dynamic namespace_uri/2 facts will be used in the guards of CHR

rules to ensure that its translation rules are applied only for XML Schema elements.

The so defined load_xsd/2 predicate called with the example XML Schema shown in

Listing 2.2 would result in a large nested Prolog list. An extract is presented in Listing 3.4.

Additionally a namespace_uri(xs,’http://www.w3.org/2001/XMLSchema’) fact

is created.

Listing 3.4: Calling load_xsd/2 with the XML Schema example of Listing 2.2

1 ?- xsd2json:load_xsd(’example.xsd’,XSD).

21

3. General Translation Process

2

3 XSD = [

4 element(

5 ’http://www.w3.org/2001/XMLSchema’:schema,

6 [xmlns:xs=’http://www.w3.org/2001/XMLSchema’],

7 [

8 element(

9 ’http://www.w3.org/2001/XMLSchema’:element,

10 [name=catalog],

11 [

12 element(

13 ’http://www.w3.org/2001/XMLSchema’:complexType,

14 [],

15 [...] % shortened

16)

17]

18),

19 element(

20 ’http://www.w3.org/2001/XMLSchema’:complexType,

21 [name=item],

22 [...] % shortened

23),

24 element(

25 ’http://www.w3.org/2001/XMLSchema’:simpleType,

26 [name=price],

27 [...] % shortened

28)

29]

30)

31].

22

3.2. XML Flattening

3.2. XML Flattening

As shown in Listing 3.4, the term provided by SWI-Prolog’s SGML/XML parser is a

list of entities of the form element(Name,Attributes,Children). The element’s

Name might be an atom like element or the element’s namespace and its tag name

separated by a colon. The Attributes are specified as a list of key-value pairs and

the Children is again a list of element/3 structures or strings and might be empty.

With this complex term returned by the SGML/XML parser translations are very difficult:

One has to walk through the whole tree multiple times to get the context of each element,

that means its parent element and children and sibling nodes. It might not be possible

to translate the entire XML Schema by a single tree traversal. Therefore we want to

split the complex, nested term into smaller fragments, so that each node and attribute

is represented by a single CHR constraint. The relations between the nodes and their

attributes is realized via unique identifiers.

We introduce the following CHR constraints to hold the information of the XML term:

• node/5

node(Namespace,Name,ID,Children_IDs,Parent_ID)

For each node (represented as element/3 structure in the term) a node/5

constraint is created that holds its namespace, name, a unique identifier, a list of

identifiers of its direct children and the identifier of its parent element.

• node_attribute/4

node_attribute(ID,Key,Value,Source)

For each attribute a new node_attribute/4 constraint is generated, which

holds the identifiers of the related node and the attribute’s key and value. The last

component is an atom which is set to source for all CHR constraints generated in

the flattening process. The other possible value, default, is reserved for default

values and introduced in section 3.3.

• text_node/3

text_node(ID,Text,Parent_ID)

If an element’s child is only a string (and no element/3 structure) a text_node/3

23

3. General Translation Process

constraint is generated. It gets a unique identifier like a regular child node and

holds the text as well as the identifier of its parent element.

The concrete implementation of the xsd_flatten_nodes/4 predicate called in the

definition of xsd2json/2 is pretty straight forward and can be found in B.2. The

XML flattening for the XML document given in Listing 2.2 would result in multiple CHR

constraints, an extract is presented in Listing 3.5.

Listing 3.5: Flattening the XML Schema example of Listing 2.2

1 ?- xsd2json:load_xsd(’example.xsd’,XSD),

2 xsd2json:xsd_flatten_nodes([],0,XSD,_).

3

4 node(http://www.w3.org/2001/XMLSchema,schema,

5 [0],[[0,0],[1,0],[2,0]],[])

6 node(http://www.w3.org/2001/XMLSchema,complexType,

7 [1,0],[[0,1,0],[1,1,0]],[0])

8 node(http://www.w3.org/2001/XMLSchema,sequence,

9 [0,1,0],[[0,0,1,0],[1,0,1,0]],[1,0])

10 node(http://www.w3.org/2001/XMLSchema,element,

11 [0,0,1,0],[],[0,1,0])

12 ...

13

14 node_attribute([0],xmlns:xs,

15 http://www.w3.org/2001/XMLSchema,source)

16 node_attribute([1,0],name,item,source)

17 node_attribute([0,0,1,0],name,name,source)

18 node_attribute([0,0,1,0],type,xs:string,source)

19 ...

As shown in Listing 3.5 the format of the unique identifiers is a combination of the

element’s position in its current level – that means first child is labelled by [0], second

child by [1] etc. – and the identifier of its parent element. The creation of the identifiers

24

3.3. Setting Defaults

can be manipulated by changing the definition of new_id/3 and its format is therefore

irrelevant for the following steps. Only its uniqueness has to be ensured.

3.3. Setting Defaults

The extract provided in Listing 3.5 contains only the information about the nodes

that are used in the definition of the XML Schema complex type <xs:complexType

name="item">. This complex type represents a sequence of XML nodes beginning

with <xs:element name="name" type="xs:string" />, as shown in Listing 2.2.

For this element, its name and and type is defined, but not its quantity. As defined in the

XML Schema Specification [W3C04] this quantity of an element can be declared via the

minOccurs and maxOccurs attributes. As they are not set in 2.2, their default value of

1 is used.

For the next step, where the translation of XML Schema fragments like this complex

type is done, we want to consult the minOccurs and maxOccurs attributes no mat-

ter if they were defined explicitly or by default. Therefore we simply propagate the

node_attribute/4 CHR constraint for each node and attribute for which the XML

Schema specification has defined a default value. To distinguish the default from the

explicitly defined attributes, we set the last component of the node_attribute/4

constraint to default. The implementation for the example mentioned above, the

propagation of the minOccurs and maxOccurs attributes for every xs:element node,

is presented in Listing 3.6.

Listing 3.6: Propagation of default minOccurs and maxOccurs attributes

1 node(Namespace,element,Element_ID,_Element_Children,_Parent_ID)

2 ==>

3 xsd_namespace(Namespace)

4 |

5 node_attribute(Element_ID,minOccurs,’1’,default).

6

7 node(Namespace,element,Element_ID,_Element_Children,_Parent_ID)

25

3. General Translation Process

8 ==>

9 xsd_namespace(Namespace)

10 |

11 node_attribute(Element_ID,maxOccurs,’1’,default).

If an attribute has both a default and an explicitly set value, the one set in the XML

Schema document should be used. Therefore duplicates of node_attribute/4

constraints with the same identifier and key should be eliminated. This is realized by the

single simpagation rule shown in Listing 3.7.

Listing 3.7: Eliminate node_attribute/4 duplicates

1 node_attribute(ID,Key,_Value_Kept,source)

2 \

3 % remove the default one

4 node_attribute(ID,Key,_Value_Removed,default)

5 <=>

6 % no new constraint added

7 true.

To reference an attribute’s value in a CHR rule it is enough to leave the last component

of node_attribute/4 unbounded, as it would match no matter if it is set to source

or default.

3.4. Fragment Translation

Before examining the next step we want to have a look at the intended result of the

overall translation process: some JSON representation in Prolog. With SWI-Prolog it

is possible to (de)serialize JSON by use of its http/json library [Wie13b]. Unlike the

SGML/XML parser, this library is not loaded by default and therefore has to be loaded

via :- use_module(library(http/json)). first.

26

3.4. Fragment Translation

The JSON document given in Listing 2.3 is represented in Prolog by the structure in

Listing 3.8.

Listing 3.8: Prolog representation of the example JSON of 2.3

1 json([

2 items=json([

3 ’4711’=json([

4 name=’Unit 1’,

5 prices=json([

6 ’Euro’=19.99,

7 ’Dollar’=27

8])

9]),

10 ’4712’=json([

11 name=’Unit 2’,

12 prices=json([

13 ’Euro’=12.5

14])

15])

16])

17])

The JSON components described in 2.3 have the following Prolog equivalents:

• Value

The values can be specified as normal strings, numbers or atoms.

• Array

An array is represented in Prolog by a list.

• Object

An object is represented by a json(List) structure, where the List is of format

[Key1=Value1, Key2=Value, ...]. The keys must be atoms or strings. So

the empty JSON object {} would be represented by the Prolog term json([]).

27

3. General Translation Process

By the use of the CHR constraints generated in the step before, small XML Schema

fragments can now be translated into their equivalent JSON Schemas, which are repre-

sented as JSON objects. Those JSON objects are hold in a json/2 CHR constraint,

whose first component is the identifier of the node/5 constraint by what the rule has

been called, the second component is a JSON representation as defined above.

The concrete translation rules are introduced in the chapter 4, nevertheless we want to

present their general structure. Listing 3.9 shows two translation rules related to XML

Schema’s xs:element: The first rule creates a json/2 constraint for all xs:element

nodes, whose type attribute was set to a basis type (tested in the rule’s guard via

valid_xsd_type/2). The second rule covers all xs:element nodes, whose fixed

attribute has been set.

Listing 3.9: Propagation of json/2 constraints for xs:element

1 transform,

2 node(Namespace,element,ID,_Children,_Element_Parent_ID),

3 node_attribute(ID,type,Type_With_NS,_)

4 ==>

5 xsd_namespace(Namespace),

6 valid_xsd_type(Type_With_NS,Type)

7 |

8 convert_xsd_type(Type,JSON),

9 json(ID,JSON).

10

11 transform,

12 node(Namespace,element,ID,_Children,_Element_Parent_ID),

13 node_attribute(ID,fixed,Fixed,_)

14 ==>

15 xsd_namespace(Namespace)

16 |

17 json(ID,json([enum=[Fixed]])).

28

3.4. Fragment Translation

Both rules presented in Listing 3.9, as well as all other translation rules, follow a typical

schema:

• Rule’s head:

– One transform/0 constraint

The transform/0 constraint is added in the definition of xsd2json/2 and

triggers the translation of the flattened XML nodes.

– At least one node/5 constraint

Each translated fragment must be assigned to an original XML node. There-

fore every translation rule contains at least one node/5 constraint, whose

identifier is referenced in the generated json/2 constraint. If the translation

depends on multiple nodes, for example to get all xs:sequence within a

xs:complexType, their relation is ensured by their unique identifiers: the

element’s parent identifier is always the last component of the node/5 con-

straint. That way siblings, childs and parents can easily be found.

– Some text_node/3 and node_attribute/4 constraints

Depending on the actual XML Schema fragment, it might be necessary to get

the element’s text content or some attribute.

– Some json/2 constraints

The entire JSON Schema is built step by step: Beginning with the leaves of the

XML Schema tree, the fragments are translated and generate various json/2

constraints. Those might be picked up for the translation of a parent element.

For example, the translation rule of a xs:sequence adds sequentially the

already generated JSON Schema fragments of its child nodes by using their

json/2 constraints.

• Guard:

By the use of the Prolog predicates xsd_namespace/1 (for a single namespace)

and xsd_namespaces/1 (for a list of namespaces) it is ensured that only XML

29

3. General Translation Process

Schema elements are consulted in the translation process. The concrete definition

of these Prolog predicates can be found in B.3.

• Rule’s Body:

In general only a single CHR constraint is added: the generated JSON Schema

which is held by a json/2.

As already shown in the example of Listing 3.9 there might be multiple CHR rules that

will be called for a single node. If an xs:element has both a simple type (first rule) and

the fixed attribute set (second rule), at least two json/2 constraints with the same

identifier are added. To get at the end a single JSON Schema, there must be a rule to

combine those json/2 constraints of the same node. The necessary simpagation rule

is shown in Listing 3.10. It uses the predicate merge_json/3, which merges two JSON

objects into a single one. Its definition can be found in B.6.

Listing 3.10: Merge multiple json/2 constraints of the same identifier

1 json(ID,JSON1),

2 json(ID,JSON2)

3 <=>

4 merge_json(JSON1,JSON2,JSON)

5 |

6 json(ID,JSON).

In addition to the json/2 constraint we introduce another constraint which holds the

JSON representation of an XML Schema fragment: For each type defined in the XML

Schema, in other words all xs:complexType and and xs:simpleType nodes with a

name attribute set, a schema_definition/3 constraint is propagates which holds its

JSON Schema representation. In this way it is possible to reference the JSON Schema

translation of globally defined XSD types by a single CHR constraint which is used in

the next step. The schema_definition/3 constraint has three components: The

name of the defined XSD type (that means the actual value of its name attribute), the

ID of the xs:complexType respectively xs:simpleType node and its JSON Schema

30

3.5. Wrap JSON Schema

translation. The concrete rules that propagates suchlike schema_definition/3

constraints can be found in section 4.3.

3.5. Wrap JSON Schema

Because the XML Schema fragments are translated one by one, the previous step will

terminate as soon as the root element of the given XML Schema has been translated, in

other words all CHR rules applicable for the node/5 with the identifier of the root element

have been called. The root element of the produced JSON Schema has a special role

as it can hold global type definitions (similar to the first-level, named xs:complexType

and xs:simpleType in the XML Schema example of Listing 2.2) in a definitions

object. This way it is possible to define a type globally and reference it in other type

definitions. An example can be found in Listing 3.11. The definitions key could be

part of any (nested) JSON Schema, but we use it only in the top level. The so defined,

named sub schemas can be referenced via a special $ref property whose value must

be an XPath-like expression to the location of the definition. The root object is referenced

by a sharp #.

Listing 3.11: Global type definition in JSON Schema

1 {

2 %% -- global definition

3 "definitions": {

4 "foo": {

5 "type": "number",

6 "minimum": 42

7 }

8 },

9

10 %% -- referencing it in another schema

11 %% -- via the $ref key

12 "type": "object",

31

3. General Translation Process

13 "properties": {

14 "bar": {

15 "$ref": "#/definitions/foo"

16 }

17 }

18 }

In this step, the wrap-up of the produced JSON Schema, we want to combine all the

schema_definition/3 constraints with the json(ID,JSON) constraint of the root

element. For that reason the CHR rule in Listing 3.12 propagates a new json/2

constraint with a definitions property set that includes the sub schema. Those

new json/2 constraints get merged into a json/2 constraint by the simpagation rule

already mentioned in Listing 3.10.

Listing 3.12: Wrap-up of schema_definition/3 constraints

1 build_schema,

2 schema_definition(Name,_ID,Inline_Schema),

3 node(Namespace,schema,Schema_ID,_Schema_Children,_)

4 ==>

5 xsd_namespace(Namespace),

6 first_id(Schema_ID)

7 |

8 json(Schema_ID,json([

9 definitions=json([Name=Inline_Schema])

10])).

3.6. Clean up and JSON Output

To return the generated JSON Schema by the use of xsd2json/2 it is necessary to get

the json/2 constraint for the root element. Therefore we introduce a new get_json/2

constraint which will be added with the identifier of the root element as its first component

32

3.6. Clean up and JSON Output

an unbounded variable as the second. By the simpagation rule of Listing 3.13 the free

variable gets bounded to the finished JSON Schema.

Listing 3.13: Bind root element’s JSON

1 json(ID,JSON)

2 \

3 get_json(ID,Result)

4 <=>

5 JSON = Result.

Finally, the created JSON Schema object gets cleaned up: In the creation process,

the names of XML attributes (specified as xs:attribute in the XML Schema) that

are translated into equivalent JSON Schema objects are prefixed with an @. If there

is no xs:element in this xs:complexType with the same name, the @ is removed

from the attribute’s name by use of a remove_at_from_property_names/2 Prolog

predicate in the xsd2json/2 definition. This predicate removes the @ only in JSON

objects whose key is properties. Its implementation and an example can be found in

B.8.

33

4
Translation Rules

In the previous chapter we introduced the general translation process. In a first step an

XML document, given as a nested Prolog term, is flattened into a number of node/5,

node_attribute/4 and text_node/3 CHR constraints. Next, these constraints

should be taken to translate fragments of the XML Schema into its equivalent JSON

Schema.

After having read in and flattened the XML Schema, the translation process for XML

Schema fragments is triggered by adding a transform/0 constraint to the constraint

store. The general structure of such translation rules has already been introduced in

section 3.4 as well as common Prolog predicates that are used in the rules’ guards.

The translation of fragments happens one by one, beginning in general with the leaves

of the tree that represents an XML Schema. It is obvious that in most cases this will

be elements with either a self-defined data type (xs:simpleType; see also 3.5) or a

35

4. Translation Rules

standard XSD data type like xs:string or xs:nonNegativeInteger. In this chapter

we want first focus on the translation of such XSD data types and thereafter introduce

the concrete translation rules of typical XML Schema fragments.

4.1. XSD Primitive Types

XML Schema provides a big number of predefined data types. The complete list can be

found in [PGM+08]. By contrast, the number of data types defined for JSON Schema

[KZ13] is quiet limited. There are only seven primitive types:

• array

• boolean

• integer

• number

• null

• object

• string

To restrict those primitive types, the JSON Schema Validation specification [Gal13]

allows also a semantic validation by the use of the format keyword. In that way it is

for example possible to set the type of a value to string and restrict its format to

email. Nevertheless the consideration of these formats is not mandatory for validation

implementations. We will use them if possible.

Although the number of primitive data types might seem higher for XML Schema, at the

very most each can be translated into an equivalent JSON Schema, due to the fact, that

for example xs:nonNegativeInteger is only an xs:integer with some restrictions,

which can be modelled in a JSON Schema as well.

The JSON Schema translation for each XML Schema data type is presented in table 4.1.

36

4.1. XSD Primitive Types

Table 4.1.: Translation of simple XSD data types

XML Schema type JSON Schema type definition

xs:string

{

"type": "string"

}

xs:boolean

{

"type": "boolean"

}

xs:float

xs:double

xs:decimal

{

"type": "number"

}

xs:integer

{

"type": "integer"

}

xs:positiveInteger

{

"type": "integer",

"minimum": 0,

"exclusiveMinimum": true

}

xs:negativeInteger

{

"type": "integer",

"maximum": 0,

"exclusiveMaximum": true

}

37

4. Translation Rules

xs:nonPositiveInteger

{

"type": "integer",

"maximum": 0,

"exclusiveMaximum": false

}

xs:nonNegativeInteger

{

"type": "integer",

"minimum": 0,

"exclusiveMinimum": false

}

This list of translations is directly implemented as a convert_xsd_type/2 Prolog

predicate, an example of its usage was already shown in Listing 3.9.

4.2. Constraining Facets

While XML Schema provides predefined data types like xs:positiveInteger, which

imply a minimum, those restrictions of the value range could be declared also via

restrictions of the basis type xs:integer. Those restrictions like XML Schema’s

xs:mimumum are called constraining facets. They can be specified as a restriction of a

basis type via an xs:restriction node. Listing 4.1 shows an equivalent, self-defined

XSD data type which is equivalent to the predefined xs:positiveInteger.

Listing 4.1: xs:positiveInteger as restriction of xs:integer

1 <xs:simpleType name="myPositiveInteger">

2 <xs:restriction base="xs:integer">

3 <xs:minExclusive value="0" />

4 </xs:restriction>

5 </xs:simpleType>

38

4.2. Constraining Facets

By the use of xs:restriction within an xs:simpleType a new so called derived

data type is defined by restriction. It is not only possible to derive from primitive data

types but also from derived data types as well. In that way it would be possible to create

a new data type derived from myPositiveInteger which adds for example an upper

bound as constraining facet.

For the translation process of the xs:restriction XSD fragment with its child nodes

it does not matter if a primitive or derived data type is the basis type specified in the

base attribute – the translated constraining facets are simply added. Therefore we can

again establish a set of translation rules for all constraining facets as shown in table 4.2,

with X standing for a number or string in case of xs:pattern.

Table 4.2.: Translation of constraining facets (X is placeholder)

XML Schema constraining facet JSON Schema equivalent

<xs:minExclusive

value="X" />

{

"minimum": X,

"exclusiveMinimum": true

}

<xs:maxExclusive

value="X" />

{

"maximum": X,

"exclusiveMaxmimum": true

}

<xs:minInclusive

value="X" />

{

"minimum": X,

"exclusiveMinimum": false

}

39

4. Translation Rules

<xs:maxInclusive

value="X" />

{

"maximum": X,

"exclusiveMaximum": false

}

<xs:minLength

value="X" />

{

"minLength": X

}

<xs:maxLength

value="X" />

{

"maxLength": X

}

<xs:length

value="X" />

{

"minLength": X,

"maxLength": X

}

<xs:pattern

value="X" />

{

"pattern": "X"

}

Not all restrictions are allowed for every basis data type [PGM+08]. But as we assume

that the given XML Schema document is valid, we do not carry out tests.

The translation rules for the different constraining facets given by table 4.2 are defined

as convert_xsd_restriction/3 predicates in Prolog like it is shown in Listing 4.2

for xs:minExclusive. The json_true/1 predicate binds the given variable to the

representation of boolean true for SWI-Prolog’s JSON library. to_number/2 converts a

given numeric string into the equivalent number.

40

4.2. Constraining Facets

Listing 4.2: Definition of convert_xsd_restriction/3 for xs:minExclusive

1 convert_xsd_restriction(minExclusive,Value,json(JSON_List)) :-

2 to_number(Value,Number),

3 json_true(True),

4 JSON_List = [minimum=Number,exclusiveMinimum=True].

The so defined convert_xsd_restriction/3 facts are used by the simpagation

rule shown in 4.3 to translate the xs:restriction node that contains a constraining

facet.

Listing 4.3: Translation of xs:restriction with a constraining facet

1 transform,

2 node(NS1,restriction,Restriction_ID,

3 _Restriction_Children,_Restriction_Parent_ID),

4 node(NS2,Constraint_Name_XSD,Constraint_ID,

5 _Constraint_Children,Restriction_ID),

6 node_attribute(Constraint_ID,value,Value,_)

7 ==>

8 xsd_namespaces([NS1,NS2]),

9 convert_xsd_restriction(

10 Constraint_Name_XSD,Value,json(JSON_List))

11 |

12 json(Restriction_ID,json(JSON_List)).

As for each constraining facet within an xs:restriction node a new json/2 CHR

constraint gets propagated. If there are multiple child nodes, they will simply get

combined via merge_json/3 as introduced in B.6. If the same constraining facet

occurs multiple times, its more specific restriction is used. The only exception is the

occurrence of multiple xs:pattern facets: As specified in [PGM+08] their regular

expressions are ORed.

The constraining facets are not the only restriction of the derived data type. The basis

type, specified via the base attribute of the xs:restriction node, also has to be

41

4. Translation Rules

considered. We translate the basis type via the table 4.1 of section 4.1 and propagate

its JSON equivalent too. This rule is shown in Listing 4.4.

Listing 4.4: Translation of xs:restriction with its base attribute

1 transform,

2 node(Namespace,restriction,ID,_Children,_Parent_ID),

3 node_attribute(ID,base,Base,_)

4 ==>

5 xsd_namespace(Namespace),

6 namespace(Base,Base_Namespace,Base_Type),

7 xsd_namespace(Base_Namespace),

8 convert_xsd_type(Base_Type,JSON)

9 |

10 json(ID,JSON).

4.3. Translation of nested XSD Elements

With the translation rules mentioned in the two sections before we only know how

to translate xs:element and xs:attribute nodes with either a basis type spec-

ified via its type attribute or a derived type by the use of xs:simpleType and

xs:restriction. However an XML Schema is more than only the definition of

simple types: Via xs:complexType nodes attributes of elements can be specified

as well as their child nodes. In that way, the occurrence of an xs:element within

an xs:sequence node is for example a very common fragment of an XML Schema

instance. In this section, we want to show how to translate typical nested XSD nodes,

depending on its sibling elements and given attributes.

The general approach has already been introduced in section 3.4: Depending on specific

node/5, node_attribute/4 and text_node/3 constraints and sometimes already

translated fragments given as json/2 constraints, we compose the translation of an XSD

node. Two examples, which do not depend on already translated json/2 constraints,

were shown in Listing 3.9.

42

4.3. Translation of nested XSD Elements

Figure 4.1.: xs:element within an xs:all node
xs:all

All_ID

xs:element

Element_ID

@minOccurs

@macOccurs

@name

To illustrate the XML Schema fragments and their JSON Schema translations we present

an extract of the XML Schema tree. An example for the translation of an xs:all node

which has an xs:element child node is shown in figure 4.1.

As shown in figure 4.1, XSD elements are represented by framed nodes and their ID

in a dashed box. For all green highlighted nodes a json/2 constraint with the same

identifier already exists, that means in the example of figure 4.1 there is already a

json(Element_ID,JSON) constraint in the CHR constraint store. For all nodes that

are not highlighted green there might be already a related json/2 constraint, but it will

not be examined for this concrete translation rule. Boxes with the title text that are

highlighted gray stand for text_node/3 constraints.

The used attributes of an XSD element are prefixed with an @, that means that for the

example of figure 4.1 the minOccurs, maxOccurs and name attributes are used in the

head of the CHR rule. The generated JSON Schema equivalents are modelled as in

tables 4.1 and 4.2. The values of the attributes are referenced by variables of the same

name in upper CamelCase. In that way we refer to the value of the maxOccurs attribute

of the XML Schema fragment as MaxOccurs in the related JSON Schema fragment.

If necessary we provide conditions under which the translation rule could apply. Those

can be directly implemented as guards in the CHR rules. The check, if the given elements

are of the XML Schema namespace as already introduced in section 3.4, are conditions

for all rules and therefore not listed explicitly.

43

4. Translation Rules

Table 4.3.: Translation of nested XSD elements

XML Schema Fragment JSON Schema equivalent
xs:restriction

All_ID

xs:enumeration

Enumeration_ID

@value

{

"enum": [Value]

}

xs:element

Element_ID

fixed

{

"enum": [Fixed]

}

xs:element

Element_ID

type

{

"type": Type

}

(with Type not being a basis or derived

type)
xs:element

Element_ID

xs:documentation

Documentation_ID

xs:annotation

An_ID

text

{

"description": Text

}

44

4.3. Translation of nested XSD Elements

xs:simpleType

SimpleType_ID

@name

xs:documentation

Documentation_ID

xs:annotation

An_ID

text

{

"description": Text

}

xs:all

All_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: JSON

},

required: [Name]

}

(if is_required_property/2, see

B.9, is true)

xs:all

All_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: JSON

}

}

(if is_required_property/2, see

B.9, is false)

45

4. Translation Rules

xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: JSON

},

required: [Name]

}

(if MinOccurs=1 and MaxOccurs=1)
xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: JSON

}

}

(if MinOccurs=0 and MaxOccurs=1)

xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: {

"type": "array",

"items": JSON,

"minItems": MinOccurs

}

},

required: [Name]

}

(if MinOccurs>0 and

MaxOccurs=unbounded)

46

4.3. Translation of nested XSD Elements

xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: {

"type": "array",

"items": JSON,

"minItems": MinOccurs

}

}

}

(if MinOccurs=0 and

MaxOccurs=unbounded)

xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: {

"type": "array",

"items": JSON,

"minItems": MinOccurs,

"maxItems": MaxOccurs

}

},

required: [Name]

}

(if MinOccurs>0 and MaxOccurs is

not unbounded)

47

4. Translation Rules

xs:sequence

Sequence_ID

xs:element

Element_ID

@minOccurs

@maxOccurs

@name

{

"type": "object",

"properties": {

Name: {

"type": "array",

"items": JSON,

"minItems": MinOccurs,

"maxItems": MaxOccurs

}

}

}

(if MinOccurs=0 and MaxOccurs is

not unbounded)

48

4.3. Translation of nested XSD Elements

xs:complexType

ComplexType_ID

xs:attribute

Attribute_ID

@name

@type

@use

@fixed

@default

{

"type": "object",

"properties": {

@Name: {

"type": JSON,

"enum": [Fixed]

}

},

required: [@Name]

}

Note: The name of a property given

as attribute is prefixed with an @ which

might be removed later.

The values of the required, enum and

enum keys depend on the attributes of

the xs:attribute node. The com-

plete implementation of the handling of

xs:attribute nodes can be found in

the appendix C.1.

49

4. Translation Rules

xs:schema

Schema_ID

xs:attribute

Attribute_ID

@name

@type

@fixed

@default

{

"definitions": {

@Name: {

"type": JSON,

"enum": [Fixed]

}

}

}

Note: Because @Name is only an

identifier in the definitions part the

prefix-@ will not be removed later.

The values of the required, enum and

enum keys depend on the attributes of

the xs:attribute node. The imple-

mentation is similar to the one shown in

the appendix C.1.

Not all translation rules can be illustrated as in figure 4.1 and table 4.3: For the

xs:sequence and xs:all nodes the translation rules specified in 4.3 are used,

whereas their parent xs:complexType node simply uses this generated JSON Schema

fragment without adding any further constraints. This behaviour is implemented in the

CHR rules shown in Listing 4.5.

Listing 4.5: Translation of xs:complexType with nested xs:sequence or xs:all

1 % xs:all

2 transform,

3 node(NS1,complexType,ComplexType_ID,

4 _ComplexType_Children,_ComplexType_Parent_ID),

5 node(NS2,all,All_ID,_All_Children,ComplexType_ID),

6 json(All_ID,All_JSON)

7 ==>

50

4.3. Translation of nested XSD Elements

8 xsd_namespaces([NS1,NS2])

9 |

10 json(ComplexType_ID,All_JSON).

11

12 % xs:sequence

13 transform,

14 node(NS1,complexType,ComplexType_ID,

15 _ComplexType_Children,_ComplexType_Parent_ID),

16 node(NS2,sequence,Sequence_ID,

17 _Sequence_Children,ComplexType_ID),

18 json(Sequence_ID,Sequence_JSON)

19 ==>

20 xsd_namespaces([NS1,NS2])

21 |

22 json(ComplexType_ID,Sequence_JSON).

By the use of the rules given in table 4.1 it is possible to translate primitive XML

Schema data types into their equivalent JSON Schema types and restrictions. The rules

presented in section 4.2 are used to create new types as a derivation by restriction. With

help of the translation rules given in section 4.3 it is possible to combine elements and

attributes of these (derived) basis types into more complex ones and therefore to create

an expressive XML Schema.

51

5
Evaluation

5.1. Test Framework

The xsd2json module has been developed by a bottom-up approach: Following the

idea of test-driven development, a separate test framework was an important part of the

development cycle. This test framework is not implemented in Prolog like the xsd2json

module but in JavaScript with node.js. Node.js is a software platform known for its

scalable, non-blocking architecture and especially used to program lightweight web

server.

Due to its growing popularity there are a great many open source modules for node.js.

One of them is interpreted [Mad13], a wrapper for node.js to perform input/output

tests. We use it to compare the results generated by the xsd2json command line tool

53

5. Evaluation

with its expected JSON Schema equivalent. Eventual differences are exported as TAP

messages, following the Test Anything Protocol [Les13].

The test framework is part of the xsd2json development suite and therefore part of

the published [Nog13] source code. Its manual is listed in the appendix A.2. There

are currently more than 60 test cases specified as XML Schema and JSON Schema

documents. Unfortunately a full iteration over all test files takes some time because the

command line interface is way slower than the programmatical usage of xsd2json. See

appendix A for further information.

5.2. Current Limitations

XML Schema has some features for which there are not yet equivalents in JSON

Schema: The lack of an XPath-like way to address a specific property inside a nested

JSON prevents the translation of keys. Therefore the XML Schema elements xs:key,

its referencing element xs:keyref can not be translated because they specify the

key-elements in their xs:selector and xs:field nodes as XPath expressions. The

same applies for XML Schema’s xs:unique element: Although JSON Schema provides

a way to ensure unique identifiers in a sub schema, the XPath expression can not be

translated yet.

Another missing feature is the handling of referenced XML Schema documents. With

the aid of using the xs:import and xs:include XML Schema nodes it is possible to

reference XML Schemas specified in other files. While the JSON Schema specification

provides a similar feature, this has not been implemented in xsd2json, which translates

only a single file as of yet. Therefore it would be possible to translate every single file,

but the references would have set manually. To support sub schemas specified via

xs:import and xs:include the handling of XML namespaces has to be improved

because in every XML Schema file the same namespace could be assigned to different

URIs (confer section 2.2).

54

6
Conclusion

In this chapter the results of the thesis are summarized and future improvements of the

xsd2json module discussed.

6.1. Summary

In this work the metalanguages XML Schema and JSON Schema were compared with

the aim to provide a set of translation rules of typical use cases. Beginning with the basis

types of XML Schema, we presented sub schemas in JSON Schema that guarantee

nearly the same semantics.

In a next step XML Schema’s concept of derivation by restriction has been introduced.

Because there is no native derivation in JSON Schema we implemented rules that directly

consider the constraining facets specified in an xs:restriction XML Schema node.

55

6. Conclusion

With the help of these rules it was possible to translate XML Schema fragments that

specify data types, regardless whether primitive or derived and whether being called

directly within an type attribute or as part of an xs:simpleType definition.

With the help of translation rules for xs:complexType nodes and its children it was

possible to embed those primitive and derived typed elements and attributes within

a sequence of properties. With respect to their allowed occurrences, specified as

minOccurs and maxOccurs attributes, the JSON Schema type was dynamically set to

a primitive type, object or array.

The elaborated translation rules, written in CHR, were embedded in an Prolog predicate

xsd2json/2. The overall process was divided into six steps, beginning from the read

in of an XML Schema document, followed by the flattening of the nested Prolog term,

right up to the assembling of the translated JSON Schema fragments.

6.2. Outlook

Not all use cases could be implemented as of yet: As mentioned earlier in section 5.2

there is no way to translate xs:key and xs:keyref elements. It is also not possible

to ensure uniqueness via xs:unique. All these elements use XPath expressions

to address elements within an XML document, but JSON does not have an official

equivalent yet. A possible way to translate those elements even so would be to evaluate

the XPath expressions in the translation process to get the addressed nodes. SWI-

Prolog already provides an XPath handling, but only for XML documents. It would be

more difficult to apply a given XPath expression not to an XML instance but its Schema

document. Nevertheless the translation of XPath expressions is a key issue as it was

also the reason to restrict our work to the older XML Schema specification 1.0 instead

of 1.1. As explained in section 2.2 the newer XML Schema 1.1 specification makes

extensive use of XPath expressions.

While we introduced the concept of derivation by restriction, XML Schema provides

another form to create new data types, namely by extension. It is possible to extend

the complex content of an already defined XSD type by adding new attributes and

56

6.2. Outlook

elements to its xs:sequence and xs:all nodes. Although the addition of attributes

would be a single CHR rule, the extension of xs:sequence and xs:all nodes are

more complicated.

Following the test-driven development approach it was possible to translate expressive

XML Schema instances. But because of missing a precise survey, which XML Schema

node can be a child of which other, it might not be clear that all use cases are covered

yet. Therefore one might be strive for a grammar for XML Schema in terms of a hyper

schema.

57

A
User Manuals

In this appendix there are the user manuals and installation guides for both the xsd2json

Prolog/CHR library and its test framework.

A.1. xsd2json

xsd2json is a library for Prolog and CHR to translate a XML Schema file into equivalent

JSON Schema. It can be used both programmatically and as a command line tool.

A.1.1. Installation

All you need is SWI-Prolog. See there for installation instructions.

59

A. User Manuals

A.1.2. Usage

xsd2json provides a command line interface. An example usage is shown in listing

A.1.

Listing A.1: Call xsd2json from the command line

1 swipl --quiet --nodebug --g ’main,halt’ \

2 -s cli.pl -- < /path/to/your.xsd

Unfortunately the command line version is way slower than using xsd2json program-

matically, that means by directly calling it in Prolog. The xsd2json.pl module provides

a predicate xsd2json/2 which can be used to convert a given XML Schema file into

the equivalent JSON Schema. It can be called via swipl -s xsd2json.pl followed

by xsd2json(’/path/to/your.xsd’,JSON), which binds the JSON variable to the

created JSON Schema. A prettier output can be generated by using the json_write/2

predicate of SWI-Prolog’s http/json library. An example usage is presented in listing

A.2. This will print the produced JSON Schema in front of the content of the CHR

constraint store, so it might be necessary to scroll up the output.

Listing A.2: Call xsd2json/2 within SWI-Prolog

1 ?- use_module(library(http/json)).

2

3 ?- xsd2json(’/path/to/your.xsd’,JSON),

4 json_write(user_output,JSON).

A.2. Test Framework

This command line tool is written with node.js and provides some functionalities to

support the test-driven development of the xsd2json library.

60

A.2. Test Framework

A.2.1. Installation

The tests are run by node.js, version 0.10 or later is required. Before using the testing

suite its dependencies must be installed via npm install.

A.2.2. Provided Tests

The command line tool provides three commands: interpreted, transform and

validate-json.

Run interpreted Tests

Each file in the xsd directory will be converted to a JSON Schema instance. Its

output gets compared with the related JSON file in the json directory. The test output,

containing confirmation or differences, is produced following the Test Anything Protocol

(TAP; [Les13]).

It is possible to run the interpreted tests for all files via node test.js interpreted.

By specifying files via the -ignore parameter it is possible to exclude some, for example

as in listing A.3 the files xsd/schema2.xsd and xsd/schema3.xsd.

Listing A.3: Exclude file from interpreted test

1 node test.js interpreted --ignore schema2 --ignore schema3

It is possible to restrict the interpreted tests to several files by using the -file parameter.

It is similar to the -ignore flag but allows regular expressions, encapsulated in slashes,

too.

By calling node test.js interpreted -files a list of possible test files is dis-

played. node test.js interpreted -help lists all options, their defaults and

possible values.

61

A. User Manuals

Validate tested JSON Output

As the expected JSON output files in the json subfolder are created manually it might

be useful to check if they really satisfy the JSON Schema Core Meta-Schema [JSO13b],

that means if they are valid JSON Schema instances. This test can be run via node

test.js validate-json. It produces a TAP output too.

A.2.3. Pretty TAP output

To get a better visual experience about passed and failed tests it is possible to pipe the

normal TAP output to the tap-prettify module like shown in listing A.4.

Listing A.4: Pretty TAP output with tap-prettify

1 node test.js validate-json | \

2 node node_modules/tap-prettify/bin/tap-prettify.js -

A.2.4. Transform a single XSD File

For testing purposes it might be useful to a single XSD file via node test.js transform.

The XML Schema file can be either referenced by the -input flag or directly piped to

standard input. The transform command simply pipes input and output of the given

file to the xsd2json command line interface.

62

B
Source Codes of Prolog Predicates

In this appendix there are several important source codes of some Prolog predicates.

B.1. xsd_flatten_attributes/2

The xsd_flatten_attributes(ID,List) Prolog predicate is used to flatten a

given List of attributes of the form [Key1=Value, Key2=Value, ...] for the

element with the identifier ID.

Listing B.1: Implementation of xsd_flatten_attributes/2

1 xsd_flatten_attributes(_ID,[]).

2

3 xsd_flatten_attributes(ID,

63

B. Source Codes of Prolog Predicates

4 [Attribute=Value|List_Of_Attributes]) :-

5 node_attribute(ID,Attribute,Value,source),

6 xsd_flatten_attributes(ID,List_Of_Attributes).

B.2. xsd_flatten_nodes/4

The xsd_flatten_nodes(Base_ID,Position,Nodes,Children_IDs Prolog

predicate is used to flatten a given, nested XML term Nodes, for example the result

of load_xsd(Input,Nodes), into a number of node/5, node_attribute/4 and

text_node/3 CHR constraints.

Listing B.2: Implementation of xsd_flatten_nodes/4

1 xsd_flatten_nodes(_Base_ID,_Pos,[],[]).

2

3 xsd_flatten_nodes(Base_ID,Pos,[Node|Nodes],[ID|Sibling_IDs]) :-

4 % is an XML node, no text

5 Node = element(Node_Type,Node_Attributes,Child_Nodes),

6 new_id(Base_ID,Pos,ID),

7 namespace(Node_Type,Namespace,Node_Type_Without_NS),

8 % flatten the node’s attributes

9 xsd_flatten_attributes(ID,Node_Attributes),

10 node(Namespace,Node_Type_Without_NS,ID,Children_IDs,Base_ID),

11 % flatten sibling nodes

12 Next_Pos is Pos+1,

13 xsd_flatten_nodes(Base_ID,Next_Pos,Nodes,Sibling_IDs),

14 % flatten all children

15 xsd_flatten_nodes(ID,0,Child_Nodes,Children_IDs).

16

17 xsd_flatten_nodes(Base_ID,Pos,[Node|Nodes],[ID|Sibling_IDs]) :-

18 atom(Node), %% is simply a text node

19 new_id(Base_ID,Pos,ID),

64

B.3. xsd_namespace/1

20 text_node(ID,Node,Base_ID),

21 % flatten sibling nodes

22 Next_Pos is Pos+1,

23 xsd_flatten_nodes(Base_ID,Next_Pos,Nodes,Sibling_IDs).

B.3. xsd_namespace/1

The xsd_namespace(Value) predicate is true if the given Value, which could be an

atom or string, is the XML Schema namespace http://www.w3.org/2001/XMLSchema.

This might only be the case, if a namespace_uri/2 fact exists for this namespace,

which might be generated during the XML parsing.

Listing B.3: Implementation of xsd_namespace/1

1 xsd_namespace(’http://www.w3.org/2001/XMLSchema’).

2 xsd_namespace(Namespace) :-

3 namespace_uri(Namespace,’http://www.w3.org/2001/XMLSchema’).

B.4. xsd_namespaces/1

The xsd_namespaces(List) predicate is true if all the atoms or string given in the

List are known XML Schema namespaces. This is checked via xsd_namespace/1

B.3.

Listing B.4: Implementation of xsd_namespaces/1

1 xsd_namespaces([]).

2 xsd_namespaces([Namespace|Namespaces]) :-

3 xsd_namespace(Namespace),

4 xsd_namespaces(Namespaces).

65

B. Source Codes of Prolog Predicates

B.5. lookup/4

By the use of lookup(Key,List,Value,List_Without_Value) it is possible to

search for a given Key in a List of key-value pairs in the form [Key1=Value1,...].

The fourth component contains the List without the search key-value pair.

Listing B.5: Implementation of lookup/4

1 lookup(Key,[Key=Value|Without_Key],Value,Without_Key).

2 lookup(Key,[Not_Key=Some_Value|Rest],Value,

3 [Not_Key=Some_Value|Without_Key]) :-

4 Key \= Not_Key,

5 lookup(Key,Rest,Value,Without_Key).

B.6. merge_json/4

merge_json(JSON1,JSON2,Result,On_Conflict merges two given JSON ob-

jects JSON1 and JSON2 into a single one Result. If JSON1 and JSON2 contain an

object with an identical key but different value, it fails if On_Conflict is 0 or hard, and

succeeds with a renaming if On_Conflict is 9 or soft. The most common usage is

with On_Conflict=hard. Only for attributes a renaming might be advisable.

Listing B.6: Implementation of merge_json/4

1 merge_json(JSON1,JSON2,Merged,soft) :-

2 merge_json(JSON1,JSON2,Merged,9).

3 merge_json(JSON1,JSON2,Merged,hard) :-

4 merge_json(JSON1,JSON2,Merged,0).

5

6 merge_json(JSON1,JSON2,_Merged,_On_Conflict) :-

7 (var(JSON1); var(JSON2)), !, false.

8

9 merge_json(json([]),json(JSON_List2),

66

B.6. merge_json/4

10 json(JSON_List2),_On_Conflict).

11

12 merge_json(json([Key=Value|Rest_JSON_List1]),json(JSON_List2),

13 json(Merged),On_Conflict) :-

14 % Key also exists in JSON_List2 and value is equal

15 lookup(Key,JSON_List2,Value,JSON2_Without_Key),

16 merge_json(json(Rest_JSON_List1),json(JSON2_Without_Key),

17 json(Rest_Merged),On_Conflict),

18 Merged = [Key=Value|Rest_Merged].

19

20 merge_json(json([Key=Value|Rest_JSON_List1]),json(JSON_List2),

21 json(Merged),On_Conflict) :-

22 % Key also exists in JSON_List2 and value is no atom

23 lookup(Key,JSON_List2,Value_in_JSON_List2,JSON2_Without_Key),

24 \+atom(Value),

25 % If ‘Key‘ is ‘required‘ or ‘enum‘ use union instead of

26 % the merge_json/3 predicate which would result

27 % in an append of both lists.

28 % This might be necessary due to different orders to

29 % apply the CHR rules.

30 (

31 (Key == required; Key == enum),

32 union(Value,Value_in_JSON_List2,Merged_Value)

33 ;

34 Key \== required,

35 Key \== enum,

36 merge_json(Value,Value_in_JSON_List2,Merged_Value)

37),

38 % merge the rest of the lists independently of the

39 % current key

40 merge_json(json(Rest_JSON_List1),json(JSON2_Without_Key),

67

B. Source Codes of Prolog Predicates

41 json(Rest_Merged),On_Conflict),

42 Merged = [Key=Merged_Value|Rest_Merged].

43

44 merge_json(json([Key=Value|Rest_JSON_List1]),json(JSON_List2),

45 json(Merged),On_Conflict) :-

46 % Key also exists in JSON_List2 and value is no atom

47 lookup(Key,JSON_List2,_Value_in_JSON_List2),

48 \+atom(Value),

49 % couldn’t be merged --> rename

50 On_Conflict == 9,

51 New_Key = ’@’Key,

52 merge_json(json([New_Key=Value|Rest_JSON_List1]),

53 json(JSON_List2),json(Merged),On_Conflict).

54

55 merge_json(json([Key=Value|Rest_JSON_List1]),json(JSON_List2),

56 json(Merged),On_Conflict) :-

57 % Key does not exist in JSON_List2

58 \+lookup(Key,JSON_List2,_),

59 merge_json(json(Rest_JSON_List1),json(JSON_List2),

60 json(Rest_Merged),On_Conflict),

61 Merged = [Key=Value|Rest_Merged].

62

63 merge_json(List1,List2,Merged_List,_On_Conflict) :-

64 is_list(List1), is_list(List2),

65 append(List1,List2,Merged_List).

68

B.7. merge_json/3

B.7. merge_json/3

merge_json(JSON1,JSON2,Result) is a shortcut for the Prolog predicate

merge_json(JSON1,JSON2,Result,hard), that means the merging fails if both

JSON1 and JSON1 have an object with an identical key but different value.

Listing B.7: Implementation of merge_json/4

1 merge_json(JSON1,JSON2,JSON) :-

2 merge_json(JSON1,JSON2,JSON,hard).

B.8. remove_at_from_property_names/2

The Prolog predicate remove_at_from_property_names(JSON,Result) removes

the @-prefix of all keys within a JSON object whose own key was set to properties.

Some example calls are listed in B.8.

Listing B.8: Example usage of remove_at_from_property_names/2

1 ?- JSON = json([

2 type=object,

3 properties=json([

4 % @-prefix is removed

5 ’@foo’=json([

6 type=number

7])

8])

9]), xsd2json:remove_at_from_property_names(JSON,Result).

10 Result = json([

11 type=object,

12 properties=json([

13 foo=json([type=number])

14])

69

B. Source Codes of Prolog Predicates

15]) .

16

17

18 ?- JSON = json([

19 type=object,

20 properties=json([

21 % can not remove @-prefix as there is

22 % another ’foo’ property

23 ’@foo’=json([

24 type=number

25]),

26 foo=json([

27 type=string

28])

29])

30]), xsd2json:remove_at_from_property_names(JSON,Result).

31 Result = JSON . % only the order of the keys in

32 % in json([...]) might differ

33

34 ?- JSON = json([

35 definitions=json([

36 ’@foo’=json([

37 type=number

38])

39])

40]), xsd2json:remove_at_from_property_names(JSON,Result).

41 Result = JSON . % only object keys within

42 % an object called ’properties’

43 % are inspected

70

B.8. remove_at_from_property_names/2

Because of the fact, that only keys within an properties object should be renamed,

the remove_at_from_property_names/2 rules have to consider at least the first

two levels of the given JSON Schema object and then traverse recursively through the

whole tree. This results in a long definition as shown in Listing B.9.

Listing B.9: Implementation of remove_at_from_property_names/2

1 remove_at_from_property_names(json([]),json([])).

2

3 remove_at_from_property_names(json(List),JSON) :-

4 lookup(properties,List,

5 json(Properties),List_Without_Properties),

6 lookup(AtKey,Properties,AtKey_Value,Properties_Without_AtKey),

7 mark_attribute(Mark),

8 string_concat(Mark,Key_Str,AtKey),

9 (

10 lookup(Key_Str,Properties_Without_AtKey,

11 Key_Value,Properties_Without_AtKey_And_Key),

12 Key = Key_Str

13 ;

14 term_to_atom(Key,Key_Str),

15 lookup(Key,Properties_Without_AtKey,

16 Key_Value,Properties_Without_AtKey_And_Key)

17),

18 remove_at_from_property_names(

19 json(Properties_Without_AtKey_And_Key),

20 json(New_Properties_Without_AtKey_And_Key)

21),

22 New_Properties = [

23 AtKey=AtKey_Value,

24 Key=Key_Value

25 | New_Properties_Without_AtKey_And_Key

26],

71

B. Source Codes of Prolog Predicates

27 remove_at_from_property_names(

28 json(List_Without_Properties),

29 json(New_List_Without_Properties)

30),

31 JSON = json([

32 properties=json(New_Properties)

33 | New_List_Without_Properties

34]).

35

36 remove_at_from_property_names(json(List),JSON) :-

37 lookup(properties,List,

38 json(Properties),List_Without_Properties),

39 lookup(AtKey,Properties,

40 AtKey_Value,Properties_Without_AtKey),

41 mark_attribute(Mark),

42 string_concat(Mark,Key,AtKey),

43 \+lookup(Key,Properties_Without_AtKey,

44 _Key_Value,_Properties_Without_AtKey_And_Key),

45 remove_at_from_property_names(

46 json(Properties_Without_AtKey),

47 json(New_Properties_Without_AtKey)

48),

49 New_Properties = [

50 Key=AtKey_Value

51 | New_Properties_Without_AtKey

52],

53 remove_at_from_property_names(

54 json(List_Without_Properties),

55 json(New_List_Without_Properties)

56),

57 JSON = json([

72

B.8. remove_at_from_property_names/2

58 properties=json(New_Properties)

59 | New_List_Without_Properties

60]).

61

62 remove_at_from_property_names(json(List),JSON) :-

63 List = [Key=Value|Rest],

64 is_list(Value),

65 remove_at_from_property_names(json(Rest),json(New_Rest)),

66 JSON = json([Key=Value|New_Rest]).

67

68 remove_at_from_property_names(json(List),JSON) :-

69 List = [Key=Value|Rest],

70 Value \= json(_),

71 remove_at_from_property_names(json(Rest),json(New_Rest)),

72 JSON = json([Key=Value|New_Rest]).

73

74 remove_at_from_property_names(json(List),JSON) :-

75 lookup(properties,List,

76 json(Properties),List_Without_Properties),

77 \+((lookup(AtKey,Properties,

78 _AtKey_Value,_Properties_Without_AtKey),

79 mark_attribute(Mark),

80 string_concat(Mark,_Key_Str,AtKey))),

81 remove_at_from_property_names(

82 json(List_Without_Properties),

83 json(New_List_Without_Properties)

84),

85 (

86 Properties == [],

87 New_Properties = []

88 ;

73

B. Source Codes of Prolog Predicates

89 Properties = [First=First_Value|Rest_Properties],

90 remove_at_from_property_names(

91 json(Rest_Properties),

92 json(New_Rest_Properties)

93),

94 (

95 First_Value = json(_),

96 remove_at_from_property_names(

97 First_Value,

98 New_First_Value

99)

100 ;

101 First_Value \= json(_),

102 New_First_Value = First_Value

103),

104 New_Properties = [

105 First=New_First_Value

106 | New_Rest_Properties

107]

108),

109 JSON = json([

110 properties=json(New_Properties)

111 | New_List_Without_Properties

112]).

113

114 remove_at_from_property_names(json(List),JSON) :-

115 \+lookup(properties,List,

116 json(_Properties),_List_Without_Properties),

117 List = [Key=json(Value)|Rest],

118 remove_at_from_property_names(json(Rest),json(New_Rest)),

119 remove_at_from_property_names(json(Value),json(New_Value)),

74

B.9. is_required_property/2

120 JSON = json([Key=json(New_Value)|New_Rest]).

B.9. is_required_property/2

is_required_property(MinOccurs,MaxOccurs) checks if an xs:elementwithin

an xs:sequence or xs:all is required. This is the case if MinOccurs is at least 1.

Listing B.10: Implementation of is_required_property/2

1 is_required_property(’1’,_).

75

C
Source Codes of CHR Rules

In this appendix there are several important source codes of some CHR rules. While the

complete source code of the xsd2json module and its testing framework are available

online [Nog13], we present here some instructional but complex translation rules.

C.1. Translation of xs:attribute

The xs:attribute node can occur within an xs:complexType node and is translated

with respect to its attributes name, type, use, fixed and default.

Listing C.1: Implementation of the translation of xs:attribute

1 /**

2 * ‘xs:complexType‘ which has an attribute with ‘@type‘

77

C. Source Codes of CHR Rules

3 * attribute being set, i.e. ‘\+var(Type)‘.

4 *

5 * Not supported attributes of this object as having no

6 * result to the created JSON:

7 * - form

8 * - id

9 */

10 transform,

11 node(NS1,complexType,ComplexType_ID,

12 _ComplexType_Children,_ComplexType_Parent_ID),

13 node(NS2,attribute,Attribute_ID,

14 _Attribute_Children,ComplexType_ID),

15 node_attribute(Attribute_ID,name,Attribute_Name,_),

16 node_attribute(Attribute_ID,type,Type_With_NS,_),

17 node_attribute(Attribute_ID,use,Use,_),

18 node_attribute(Attribute_ID,fixed,Fixed,_),

19 node_attribute(Attribute_ID,default,Default,_)

20 ==>

21 \+var(Type_With_NS),

22 xsd_namespaces([NS1,NS2]),

23 reference_type(Type_With_NS,json(Attribute_JSON))

24 |

25 % check ‘fixed‘ entity

26 (

27 var(Fixed),

28 Attribute_JSON2 = Attribute_JSON

29 ;

30 \+var(Fixed),

31 cast_by_json(Attribute_JSON,Fixed,Fixed_Casted),

32 Attribute_JSON2 = [enum=[Fixed_Casted]|Attribute_JSON]

33),

78

C.1. Translation of xs:attribute

34 % check ‘default‘ entity

35 (

36 var(Default),

37 Attribute_JSON3 = Attribute_JSON2

38 ;

39 /**

40 * As mentioned in the XSD specification not both

41 * ‘fixed‘ and ‘enum‘ can be set.

42 */

43 \+var(Default),

44 var(Fixed), % see explanation above

45 cast_by_json(Attribute_JSON2,Default,Default_Casted),

46 Attribute_JSON3 = [

47 default=Default_Casted

48 |Attribute_JSON2

49]

50),

51 % generate JSON

52 mark_attribute(Mark),

53 string_concat(Mark,Attribute_Name,Attribute_Name2),

54 JSON1 = [

55 type=object,

56 properties=json([

57 Attribute_Name2=json(Attribute_JSON3)

58])

59],

60 % check ‘required‘ entity

61 (

62 Use == required,

63 JSON2 = [required=[Attribute_Name]|JSON1]

64 ;

79

C. Source Codes of CHR Rules

65 Use \= required,

66 JSON2 = JSON1

67),

68 json(ComplexType_ID,json(JSON2)).

69

70

71 /**

72 * ‘xs:complexType‘ which has an attribute with an

73 * inline type definition, i.e. ‘var(Type)‘ and an

74 * ‘xs:simpleType‘ child node.

75 *

76 * This rule will be called once the JSON for the inner

77 * ‘xs:simpleType‘ has been generated.

78 */

79 transform,

80 node(NS3,simpleType,SimpleType_ID,

81 _SimpleType_Children,Attribute_ID),

82 json(SimpleType_ID,json(SimpleType_JSON)),

83 node(NS1,complexType,ComplexType_ID,

84 _ComplexType_Children,_ComplexType_Parent_ID),

85 node(NS2,attribute,Attribute_ID,

86 _Attribute_Children,ComplexType_ID),

87 node_attribute(Attribute_ID,name,Attribute_Name,_),

88 node_attribute(Attribute_ID,type,Unbound_Type,_),

89 node_attribute(Attribute_ID,use,Use,_),

90 node_attribute(Attribute_ID,fixed,Fixed,_),

91 node_attribute(Attribute_ID,default,Default,_)

92 ==>

93 var(Unbound_Type),

94 xsd_namespaces([NS1,NS2,NS3])

95 |

80

C.1. Translation of xs:attribute

96 Attribute_JSON = SimpleType_JSON,

97 % check ‘fixed‘ entity

98 (

99 var(Fixed),

100 Attribute_JSON2 = Attribute_JSON

101 ;

102 \+var(Fixed),

103 cast_by_json(Attribute_JSON,Fixed,Fixed_Casted),

104 Attribute_JSON2 = [enum=[Fixed_Casted]|Attribute_JSON]

105),

106 % check ‘default‘ entity

107 (

108 var(Default),

109 Attribute_JSON3 = Attribute_JSON2

110 ;

111 /**

112 * As mentioned in the XSD specification not both

113 * ‘fixed‘ and ‘enum‘ can be set.

114 */

115 \+var(Default),

116 var(Fixed), % see explanation above

117 cast_by_json(Attribute_JSON2,Default,Default_Casted),

118 Attribute_JSON3 = [

119 default=Default_Casted

120 |Attribute_JSON2

121]

122),

123 mark_attribute(Mark),

124 string_concat(Mark,Attribute_Name,Attribute_Name2),

125 JSON1 = [

126 type=object,

81

C. Source Codes of CHR Rules

127 properties=json([

128 Attribute_Name2=json(Attribute_JSON3)

129])

130],

131 % check ‘required‘ entity

132 (

133 Use == required,

134 JSON2 = [required=[Attribute_Name]|JSON1]

135 ;

136 Use \= required,

137 JSON2 = JSON1

138),

139 json(ComplexType_ID,json(JSON2)).

140

141

142 /**

143 * ‘xs:complexType‘ which has an attribute with ‘@ref‘

144 * attribute being set.

145 *

146 * As specified, ‘@name‘ and ‘@type‘ can not be both

147 * present.

148 */

149 transform,

150 node(NS1,complexType,ComplexType_ID,

151 _ComplexType_Children,_ComplexType_Parent_ID),

152 node(NS2,attribute,Attribute_ID,

153 _Attribute_Children,ComplexType_ID),

154 node_attribute(Attribute_ID,ref,Ref,_),

155 node_attribute(Attribute_ID,use,Use,_),

156 node_attribute(Attribute_ID,fixed,_Fixed,_),

157 node_attribute(Attribute_ID,default,_Default,_)

82

C.1. Translation of xs:attribute

158 ==>

159 xsd_namespaces([NS1,NS2])

160 |

161 string_concat(’#/definitions/@’,Ref,Definition_Ref),

162 Attribute_JSON = [

163 ’$ref’=Definition_Ref

164],

165 JSON1 = [

166 type=object,

167 properties=json([

168 Ref=json(Attribute_JSON)

169])

170],

171 % check ‘required‘ entity

172 (

173 Use == required,

174 JSON2 = [required=[_Attribute_Name]|JSON1]

175 ;

176 Use \= required,

177 JSON2 = JSON1

178),

179 json(ComplexType_ID,json(JSON2)).

83

List of Tables

4.1. Translation of simple XSD data types . 37

4.2. Translation of constraining facets . 39

4.3. Translation of nested XSD elements . 44

85

Bibliography

[Arc12] ARCHIVE, W3C N.: Two XML Schema Specifications are Recommenda-

tions. http://www.w3.org/News/2012#entry-9412. Version: April

2012

[BFRW01] BROWN, Allen ; FUCHS, Matthew ; ROBIE, Jonathan ; WADLER, Philip: XML

Schema: Formal Description. World Wide Web Consortium, Working Draft

WD-xmlschema-formal-20010925, September 2001

[Bir04] BIRON, A. Malhotra P.: XML Schema Part 2: Datatypes Second Edition /

W3C Recommendation. 2004. – Forschungsbericht

[bra06] BRAY, Tim (Hrsg.) ; PAOLI, Jean (Hrsg.) ; SPERBERG-MCQUEEN, C.M.

(Hrsg.) ; MALER, Eve (Hrsg.) ; YERGEAU, François (Hrsg.) ; COWAN, John

(Hrsg.). W3C - WORLD WIDE WEB CONSORTIUM: Extensible Markup

Language (XML) 1.1 (Second Edition) / W3C - World Wide Web Con-

sortium. Version: Second, September 2006. http://www.w3.org/TR/

2006/REC-xml11-20060816/. W3C - World Wide Web Consortium,

September 2006. – W3C Recommendation

[Cla97] CLARK, James: Comparison of SGML and XML. In: World Wide Web

Consortium Note 15 (1997)

[CM84] CLOCKSIN, William F. ; MELLISH, Christopher S.: Programming in PROLOG.

(1984)

[Cov05] COVER, Robin: XML Applications and Initiatives. http://xml.

coverpages.org/xmlApplications.html. Version: Juni 2005

87

http://www.w3.org/News/2012#entry-9412
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://xml.coverpages.org/xmlApplications.html
http://xml.coverpages.org/xmlApplications.html

BIBLIOGRAPHY

[Cro06] CROCKFORD, D.: The application/json Media Type for JavaScript Object

Notation (JSON). RFC 4627 (Informational). http://www.ietf.org/

rfc/rfc4627.txt. Version: July 2006 (Request for Comments)

[Duv11] DUVANDER, Adam: 1 in 5 APIs Say “Bye XML”.

http://blog.programmableweb.com/2011/05/25/

1-in-5-apis-say-bye-xml/. Version: Mai 2011

[ECM99] ECMA: ECMAScript Language Specification. http://www.

ecma-international.org/publications/files/ecma-st/

ECMA-262.pdf. Version: December 1999. – ECMA Standard 262, 3rd

Edition

[Frü95] FRÜHWIRTH, Thom: Constraint handling rules. Springer, 1995

[Gal13] GALIEGUE, Francis: JSON Schema: interactive and non

interactive validation. http://tools.ietf.org/html/

draft-fge-json-schema-validation-00. Version: Februar

2013 (Internet-Draft)

[GSMT+08] GAO, Shudi ; SPERBERG-MCQUEEN, C. M. ; THOMPSON, Henry S. ;

MENDELSOHN, Noah ; BEECH, David ; MALONEY, Murray: W3C XML

Schema Definition Language (XSD) 1.1 Part 1: Structures. World Wide

Web Consortium, Working Draft WD-xmlschema11-1-20080620, June 2008

[JSO11] Roadmap for the JSON Schema spec - JSON Schema Google Group.

https://groups.google.com/forum/#!msg/json-schema/

JSfq2xPnlsA/24MU4zbN2BMJ. Version: Februar 2011

[JSO13a] Introducing JSON. http://www.json.org/. Version: November 2013

[JSO13b] JSON Schema Core/Validation Meta Schema. http://json-schema.

org/schema. Version: Dezember 2013

[JSO13c] JSON Schema Software. http://json-schema.org/

implementations.html. Version: Oktober 2013

88

http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://blog.programmableweb.com/2011/05/25/1-in-5-apis-say-bye-xml/
http://blog.programmableweb.com/2011/05/25/1-in-5-apis-say-bye-xml/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://groups.google.com/forum/#!msg/json-schema/JSfq2xPnlsA/24MU4zbN2BMJ
https://groups.google.com/forum/#!msg/json-schema/JSfq2xPnlsA/24MU4zbN2BMJ
http://www.json.org/
http://json-schema.org/schema
http://json-schema.org/schema
http://json-schema.org/implementations.html
http://json-schema.org/implementations.html

BIBLIOGRAPHY

[KZ09] K. ZYP, Ed.: A JSON Media Type for Describing the Structure and Mean-

ing of JSON Documents (Draft 01). http://tools.ietf.org/html/

draft-zyp-json-schema-01. Version: Dezember 2009 (Internet-

Draft)

[KZ13] K. ZYP, Ed.: A JSON Media Type for Describing the Structure and Mean-

ing of JSON Documents (Draft 04). http://tools.ietf.org/html/

draft-zyp-json-schema-04. Version: Januar 2013 (Internet-Draft)

[Les13] LESTER, Andy: Documentation for the TAP format. https:

//metacpan.org/pod/release/PETDANCE/Test-Harness-2.

64/lib/Test/Harness/TAP.pod. Version: Dezember 2013

[Mad13] MADSEN, Andreas: npmjs: Interpreted. https://npmjs.org/

package/interpreted. Version: Dezember 2013

[Nog13] NOGATZ, Falco: Github: Source Code of xsd2json. https://github.

com/fnogatz/xsd2json. Version: Dezember 2013

[NPRI09] NURSEITOV, Nurzhan ; PAULSON, Michael ; REYNOLDS, Randall ; IZURIETA,

Clemente: Comparison of JSON and XML Data Interchange Formats: A

Case Study. In: CAINE 2009 (2009), S. 157–162

[PGM+08] PETERSON, David ; GAO, Shudi ; MALHOTRA, Ashok ; SPERBERG-

MCQUEEN, C. M. ; THOMPSON, Henry S.: W3C XML Schema Definition

Language (XSD) 1.1 Part 2: Datatypes. World Wide Web Consortium,

Working Draft WD-xmlschema11-2-20080620, June 2008

[W3C04] W3C: XML Schema Part 1: Structures Second Edition ; W3C Recommen-

dation 28 October 2004. http://www.w3.org/TR/xmlschema-1/.

Version: 2004

[Wie05] WIELEMAKER, Jan: SWI-Prolog SGML/XML Parser. In: SWI, University of

Amsterdam, Roetersstraat 15 (2005), S. 1018

[Wie13a] WIELEMAKER, Jan: load_structure/3 - SWI-Prolog Manual. http://www.

swi-prolog.org/pldoc/man?predicate=load_structure/3.

Version: Juli 2013

89

http://tools.ietf.org/html/draft-zyp-json-schema-01
http://tools.ietf.org/html/draft-zyp-json-schema-01
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-zyp-json-schema-04
https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/Harness/TAP.pod
https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/Harness/TAP.pod
https://metacpan.org/pod/release/PETDANCE/Test-Harness-2.64/lib/Test/Harness/TAP.pod
https://npmjs.org/package/interpreted
https://npmjs.org/package/interpreted
https://github.com/fnogatz/xsd2json
https://github.com/fnogatz/xsd2json
http://www.w3.org/TR/xmlschema-1/
http://www.swi-prolog.org/pldoc/man?predicate=load_structure/3
http://www.swi-prolog.org/pldoc/man?predicate=load_structure/3

BIBLIOGRAPHY

[Wie13b] WIELEMAKER, Jan: Supporting JSON - SWI-Prolog Manual. http:

//www.swi-prolog.org/pldoc/doc_for?object=section(2,

’5’,swi(’/doc/packages/http.html’)). Version: Dezember 2013

90

http://www.swi-prolog.org/pldoc/doc_for?object=section(2,'5',swi('/doc/packages/http.html'))
http://www.swi-prolog.org/pldoc/doc_for?object=section(2,'5',swi('/doc/packages/http.html'))
http://www.swi-prolog.org/pldoc/doc_for?object=section(2,'5',swi('/doc/packages/http.html'))

Name: Falco Nogatz Matrikelnummer: 718320

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Falco Nogatz

	Introduction
	Motivation
	Scope of this Thesis
	Methodology
	Road Map

	Technologies
	XML
	XML Schema
	JSON
	JSON Schema
	Prolog
	Constraint Handling Rules

	General Translation Process
	Read in XML Schema into Prolog
	XML Flattening
	Setting Defaults
	Fragment Translation
	Wrap JSON Schema
	Clean up and JSON Output

	Translation Rules
	XSD Primitive Types
	Constraining Facets
	Translation of nested XSD Elements

	Evaluation
	Test Framework
	Current Limitations

	Conclusion
	Summary
	Outlook

	User Manuals
	xsd2json
	Installation
	Usage

	Test Framework
	Installation
	Provided Tests
	Pretty TAP output
	Transform a single XSD File

	Source Codes of Prolog Predicates
	xsd_flatten_attributes/2
	xsd_flatten_nodes/4
	xsd_namespace/1
	xsd_namespaces/1
	lookup/4
	merge_json/4
	merge_json/3
	remove_at_from_property_names/2
	is_required_property/2

	Source Codes of CHR Rules
	Translation of xs:attribute

	List of Tables
	Bibliography

